Additional Info

From A to Z - Introduction to your Microscope Ebook Available Now!

Recent Articles

  1. Tardigrades - Classification, Reproduction, Habitat and Survival

    Dec 11, 18 12:31 PM

    Tardigrades are arthropod-like micrometazoans with four pairs of legs (lobopods) particularly known for their ability to survive in various extreme conditions. Tardigrades have been shown to be a phyl…

    Read More

  2. Rhizobium - Species, Nitrogen Fixation, Biofertilizer and Culture

    Nov 13, 18 07:25 PM

    Rhizobium are a group of Gram-negative soil bacteria that are well known for their symbiotic relationship with various leguminous (soybeans, alfalfa etc).

    Read More

  3. Proteobacteria - Function, diseases, characteristics/structure

    Nov 09, 18 12:22 PM

    Proteobacteria makes up one of the largest phyla and most versatile phyla in the Bacteria domain. As such, it consists of several types of bacterial that include phototrophs, chemolithotrophs and hete…

    Read More



MicroscopeMaster.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means to earn fees by linking to Amazon.com and affiliated sites.

Share



Microscopy Imaging Techniques


Microscopy imaging techniques are employed by scientists and researcher to improve their ability to view the microscopic world.

Advances in microscopy enable visualization of a broad range of biological processes and features in cell structure. This page outlines the different types and provides a brief introduction to the technique.

You are invited to follow the corresponding links to read further about the technique you are interested in reviewing.

algae with visible cells


Brightfield Microscopy - is the most elementary form of imaging a specimen and is generally used with compound microscopes. The technique takes the specimen which is dark and contrasts it by the surrounding bright viewing field. Compound light microscopes are often simply referred to as brightfield microscopes. Right:algae with visible cells


Oil Immersion Microscopy - Oil Immersion Microscopy is an essential tool in examining specimens under a compound microscope. Although its few disadvantages are significant, careful technique will minimize problems such as cement drying on a lens. Similar refractive indexes allow for large bright images, especially useful to the study of inanimate objects, striated tissue and bacteria; a mixture of synthetic oils can create the most suitable viscosity to achieve high resolute quality images.


Kohler Illumination - is a microscopy imaging technique first developed in 1893 through the optimization of a microscope’s optical train so as to allow for homogenously bright light without artifacts and glare.

darkfield technique - sugar crystals

Darkfield Microscope - is the optimum microscopy technique for making objects appear bright against a dark background otherwise their refractive values are similar to the background and they will not be properly imaged. Dark Field is achieved by modifying your microscope. Right:sugar crystals


Differential Interference Contrast microscopy - is a microscopy imaging technique which benefits from differences in the light refraction by different sections of living cells and transparent specimens and allows for better visibility during microscopic evaluation.

hemocytometer with fibroblasts using phase contrast microscope

Phase Contrast Microscope - is most useful in viewing “phase objects" which are transparent, colorless and/or unstained specimens. This is employing a microscopy imaging technique benefiting molecular and cellular biology, microbiology and medical research. You are invited to explore the applications, pros and cons of this technique. At right: hemocytometer with fibroblasts.


Fluorescence Microscope - employs high-powered light waves to provide unique image viewing options that are unavailable with conventional light microscopes. This imaging technique also uses stains so as to better view more components and details of the inner structures of cells. See immunofluorescence technique also.

microscopic artificial sweetener crystals in polarized light

Polarizing Microscope - the ideal choice for birefringent materials. Polarization is used to enhance contrast and color to images providing information about absorption, structure and composition of specimens. The study of rocks and minerals in geology or petrography fields benefits through the use of this imaging technique as well as medicine, biology and metallurgy. At right: microscopic artificial sweetener crystals in polarized light.

immunohistochemical stain of vimentin protein in smooth muscle cells - confocal laser microscope

Confocal Microscope - Separating light waves with lasers and with the use of state of the art technology, images can be viewed without blurred edges and in higher resolutions. Many images can be taken quickly with a small section of the sample viewed at a time. At right: immunohistochemical stain of vimentin protein in smooth muscle cells.

See Super-Resolution Microscopy

And immunohistochemistry

Enjoy!! 



Return from Microscopy Imaging Techniques to Best Microscope Home 



New! Comments

Have your say about what you just read on MicroscopeMaster! Leave me a comment in the box below.